Neueste Projekte

Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2023-12-01 - 2028-11-30

Durch Photosynthese wandeln Meeresalgen jedes Jahr Gigatonnen von Kohlendioxid in Kohlenhydrate um. In Form von Algenpolysacchariden bestimmen diese strukturell komplexen Biomoleküle in hohem Maße, wie viel Kohlenstoff in den Ozeanen gespeichert wird. Spezialisierte Meeresbakterien setzen diese Kohlenstoff-Energie frei, indem sie die Polysaccharide durch die Wirkung kohlenhydrataktiver Enzyme (CAZyme) aufspalten und das Kohlendioxid wieder in die Atmosphäre entlassen. Einige der Polysaccharide werden jedoch nicht schnell recycelt, sondern sinken in die Tiefsee und in die Sedimente, wo sie Kohlenstoff für Jahrtausende speichern können. Um diese Prozesse besser zu verstehen, sind große Anstrengungen zur weiteren Erforschung des marinen Kohlenstoffkreislaufs erforderlich. Die gleichen Fortschritte sind auch wichtig, um aufkommende Bemühungen zu unterstützen, Algenbiomasse als neue nachhaltige Ressource für die Bioökonomie zu nutzen. Die enzymatische Maschinerie, die für den Abbau von Polysacchariden durch Meeresbakterien verantwortlich ist, ist aufgrund der Größe und Heterogenität der Algenpolysaccharide noch weitgehend unerforscht. Reine und definierte Oligosaccharide, die für ein systematisches Screening von marinen CAZymes benötigt werden, sind derzeit nicht verfügbar. Da die herkömmliche chemische Synthese zeitaufwändig und oft nicht allgemein genug ist, zielt ASAP darauf ab, Sammlungen von Oligosacchariden aus verschiedenen Klassen von Algenpolysacchariden zu erhalten, indem die Technologie der automatisierten Glykanassemblierung (AGA) eingesetzt wird. Oligosaccharide mit vielen verschiedenen Sequenzen und Sulfatierungsmustern werden aus einer begrenzten Anzahl von Monosaccharidbausteinen hergestellt. Inkubation der synthetischen Oligosaccharide mit Proben, die kohlenhydratabbauende Aktivität enthalten, und anschließende HPLC-MS-Analyse der Abbauprodukte werden Aufschluss geben über: 1) die kollektiven Enzymaktivitäten bakterieller Gemeinschaften in Meerwasser- und Sedimentproben; 2) die Fähigkeiten einzelner Bakterienstämme, spezifische Polysaccharide abzubauen; 3) die Substratspezifitäten gereinigter CAZymes.
Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2022-10-15 - 2024-07-31

Das Spike Protein von HIV-1 ist mit einem Cluster von oligomannosidischen Glykanen versehen die neutralisierende Antikörpern (bnAbs) induzieren können. Während sich solche nAbs in einigen HIV-infizierten Personen autonom entwickeln können, sind alle Versuche derartige schützenden Antikörper durch Immunisierung zu generieren bisher gescheitert. Die methodischen Ansätze dazu basierten auf der Herstellung von oligomannosidischen Clustern, die an Trägerproteine gekoppelt wurden. Die Schwierigkeit, damit neutralisierende Antikörper zu erzeugen, liegt vor allem an der Immuntoleranz gegenüber diesen körpereigenen Kohlenhydrat-Strukturen. Im Projekt wird nunmehr versucht durch Verwendung von oligomannosidischen Mimetika diese Toleranzmechanismen auszuschalten und die Kohlenhydratantigene in einem "fremden" Milieu zu präsentieren um die Bildung von kreuz-reaktiven Antikörpern zu stimulieren. Im Vorprojekt konnte gezeigt werden dass entsprechende CRM197-konjugate mit hoher Avidität von einigen Oligomannose-spezifischen Antikörpern sowie auch von deren Keimbahnvarianten und von rekombinanten HIV-1 SOSIP Trimeren gebunden wurden. Für diese Aktivitäten ist jedoch der Zusatz von einem TLR4-stimulierenden Th1-Adjuvans (GLA-SE) erforderlich. Im Projekt sollen diese Arbeiten mit dem Schwerpunkt auf weitere Kohlenhydratmimetika und optimierten Immunisierungsexperimenten mit neuen Adjuvantien weiter vertieft werden. Die Ergebnisse sollten die Basis für künftige präklinische Studien liefern und einen Beitrag für neue HIV-Vakzinstrategien leisten.
Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2022-06-01 - 2025-11-30

Der Rezeptor CLEC-2 ist an zwei wichtigen Prozessen der Thrombozytenbiologie beteiligt: der Trennung von Blut- und Lymphgefäßen und der Thrombose. Damit ist CLEC2 ein potenzielles Target für Medikamente bei Wundheilung, Entzündungen, Infektionen und Krebs, sowie der Behandlung von thrombo-entzündlichen Erkrankungen. Allerdings darf eine Therapie keine Störung der Hämostase verursachen. Zwar hat die Vergangenheit Einblicke in die CLEC-2-Liganden-Interaktionen gebracht und die resultierenden Signalkaskaden wurden besser verstanden, jedoch sind die Mechanismen, durch die die biologischen Funktionen gesteuert werden, noch immer wenig erklärt. Dies liegt an einem Mangel an chemischen Tools. Wie zum Beispiel die Rezeptorclustering die Signalübertragung und Verarbeitung von Liganden des CLEC-2 steuert ist noch wenig verstanden. In diesem Projekt wird eine Thrombozyten-spezifische, liposomale Plattform entwickelt, die mechanistische Studien erlaubt und ein zielgerichtetes Delivery ermöglicht. Nanopartikel werden mit natürlichen oder hochaffinen, synthetischen CLEC-2-Liganden konjugiert. Damit eröffnet sich die Möglichkeit, die Ligandenaffinität und -dichte auf den Nanopartikeln zu kontrollieren. Mit diesen Partikeln kann dann mehr über die Rolle des CLEC-2 in der Thrombozytenbiologie in Erfahrung gebracht werden. Weiterhin kann CLEC-2 als therapeutisches Ziel für niedermolekulare Inhibitoren und für das Delivery von RNA Therapeutika erkundet werden.

Betreute Hochschulschriften